论文标题
在biquandles上,$ g_n^k $和表面奇异的辫子
On biquandles for the groups $G_n^k$ and surface singular braid monoid
论文作者
论文摘要
这些组$ g_n^k $由V. O. Manturov定义,以描述配置系统中的动态系统。在论文中,我们考虑了该理论的两个应用:我们在$ g_n^k $的组上定义了一个双重结构,并构建了从表面奇异的辫子单型单体到组$ g_n^2 $的同构。
The groups $G_n^k$ were defined by V. O. Manturov in order to describe dynamical systems in configuration systems. In the paper we consider two applications of this theory: we define a biquandle structure on the groups $G_n^k$, and construct a homomorphism from the surface singular braid monoid to the group $G_n^2$.