论文标题

Jordan Moore-Gibson-Thompson方程的消失的放松时间动力学在非线性声学中产生

Vanishing relaxation time dynamics of the Jordan Moore-Gibson-Thompson equation arising in nonlinear acoustics

论文作者

Bongarti, Marcelo, Charoenphon, Sutthirut, Lasiecka, Irena

论文摘要

引入的(jmgt方程中的第三阶)jmgt方程{jordan2,hcp}是一种非线性(准线性)偏微分方程(PDE)模型,引入了用于描述在声学介质中声音的非线性传播。重要的特征是该模型避免了与经典的二阶时方程相关的无限传播悖论速度,称为Westervelt方程。由Maxwell-Cattaneo定律替换傅立叶定律产生了按小参数$τ> 0 $缩放的时间导数的第三顺序,后者代表热弛豫时间参数,并且是动态发生的介质的固有的。在本文中,当$τ\ rightarrow 0 $时,我们对三阶模型进行了渐近分析。结果表明,相应的解决方案在相位空间的强拓扑中收敛到westervelt方程解决方案的极限。此外,为显示高阶规则性的解决方案提供了收敛速度。这解决了在\ cite {kaltev2}中提出的一个空旷的问题,其中已经研究了相关的JMGT方程,并在建立了$τ\ rightarrow 0 $时{\ it弱星}收敛的解决方案。因此,我们的主要贡献表明{\ IT在无限时间范围内的强烈收敛,以及在有限的时间范围内有效的收敛速率。解锁困难的关键将对初始数据的“小”进行严格控制和传播,以在三个不同的拓扑水平下携带估计值。收敛速度允许然后估计信号到达目标所需的放松时间。研究这种类型的问题的兴趣是由工程和医学科学引起的大量应用的促进。

The (third-order in time) JMGT equation \cite{Jordan2,HCP} is a nonlinear (quasi-linear) Partial Differential Equation (PDE) model introduced to describe a nonlinear propagation of sound in an acoustic medium. The important feature is that the model avoids the infinite speed of propagation paradox associated with a classical second order in time equation referred to as Westervelt equation. Replacing Fourier's law by Maxwell-Cattaneo's law gives rise to the third order in time derivative scaled by a small parameter $τ>0$, the latter represents the thermal relaxation time parameter and is intrinsic to the medium where the dynamics occur. In this paper we provide an asymptotic analysis of the third order model when $τ\rightarrow 0 $. It is shown that the corresponding solutions converge {\it in a strong topology of the phase space } to a limit which is the solution of Westervelt equation. In addition, rate of convergence is provided for solutions displaying higher order regularity. This addresses an open question raised in \cite{kaltev2}, where a related JMGT equation has been studied and {\it weak star } convergence of the solutions when $τ\rightarrow 0$ has been established. Thus, our main contribution is showing {\it strong convergence on infinite time horizon,} along with related rates of convergence valid on a finite time horizon. The key to unlocking the difficulty owns to a tight control and propagation of the "smallness" of the initial data in carrying the estimates at three different topological levels. The rate of convergence allows one then to estimate the relaxation time needed for the signal to reach the target. The interest in studying this type of problems is motivated by a large array of applications arising in engineering and medical sciences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源