论文标题

在尺寸的字段上是全球或本地字段的Galois扩展

On Fields of dimension one that are Galois extensions of a global or local field

论文作者

Chipchakov, Ivan D.

论文摘要

让$ k $是全球或本地领域,$ e/k $ agalois扩展名,br $(e)$ $ e $的brauer集团。本文表明,如果$ k $是本地领域,$ v $是其自然离散估值,$ v'$是$ e $延长$ v $的估值,而$ q $是残留场$ \ widehat e $ of $ of $(e,v')$的特征$ p $ - $ \ widehat k $的扩展,对于每个prime $ p \ neq q $; $ \ widehat e $是一个代数封闭的字段,以防Value Group $ V'(e)$是$ q $ - 不可分割的。当$ k $是一个全球字段时,它以br $(e)= \ {0 \} $为特征,该字段$ e $位于$ k $的Tame Abelian扩展名中。我们还提供了一个标准,即在后一种情况下,对于任何整数$ n \ ge 2 $,都存在$ n $ variate $ e $ - $ n $的形式,违反了Hasse原则。

Let $K$ be a global or local field, $E/K$ a Galois extension, and Br$(E)$ the Brauer group of $E$. This paper shows that if $K$ is a local field, $v$ is its natural discrete valuation, $v'$ is the valuation of $E$ extending $v$, and $q$ is the characteristic of the residue field $\widehat E$ of $(E, v')$, then Br$(E) = \{0\}$ if and only if the following conditions hold: $\widehat E$ contains as a subfield the maximal $p$-extension of $\widehat K$, for each prime $p \neq q$; $\widehat E$ is an algebraically closed field in case the value group $v'(E)$ is $q$-indivisible. When $K$ is a global field, it characterizes the fields $E$ with Br$(E) = \{0\}$, which lie in the class of tame abelian extensions of $K$. We also give a criterion that, in the latter case, for any integer $n \ge 2$, there exists an $n$-variate $E$-form of degree $n$, which violates the Hasse principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源