论文标题

在手机获得的冷冻部分图像上训练的深度学习模型有效地检测了基础细胞癌

Deep learning model trained on mobile phone-acquired frozen section images effectively detects basal cell carcinoma

论文作者

Cao, Junli, S., B., Wu, Junyan, S., M., Zhang, Jing W., D., M., D., Ph., Ye, Jay J., D., M., D., Ph., Yu, Limin, D., M., S, M.

论文摘要

背景:使用冷冻部分对基底细胞癌的边缘评估是病理术中咨询的常见任务。尽管经常直截了当,但在组织切片上的基础细胞癌的存在或不存在有时可能具有挑战性。我们探讨了在手机获得的冷冻部分图像上训练的深度学习模型是否可以具有足够的性能以进行将来的部署。材料和方法:使用手机获取了为基底细胞癌边缘进行的一千二十四十一(1241)张图像。这些照片以100倍放大率拍摄(10倍物镜)。将图像从4032 x 3024像素分辨率下降到576 x 432像素分辨率。具有Xception主链的语义分割算法DeepLab V3用于模型训练。结果:模型使用图像作为输入,并产生相同维度预测的二维黑白输出;确定为基底细胞癌的区域在黑色背景中以白色显示。白色像素数量超过像素总数的0.5%的任何输出对基底细胞癌呈阳性。在测试集中,该模型在接收器操作员曲线的曲线下达到0.99的面积,而在像素级别的Precision-Recall曲线为0.97。幻灯片水平分类的准确性为96%。结论:经过手机图像训练的深度学习模型显示出令人满意的性能特征,因此证明了将部署为移动电话应用程序的潜力,可以实时帮助冷冻部分解释。

Background: Margin assessment of basal cell carcinoma using the frozen section is a common task of pathology intraoperative consultation. Although frequently straight-forward, the determination of the presence or absence of basal cell carcinoma on the tissue sections can sometimes be challenging. We explore if a deep learning model trained on mobile phone-acquired frozen section images can have adequate performance for future deployment. Materials and Methods: One thousand two hundred and forty-one (1241) images of frozen sections performed for basal cell carcinoma margin status were acquired using mobile phones. The photos were taken at 100x magnification (10x objective). The images were downscaled from a 4032 x 3024 pixel resolution to 576 x 432 pixel resolution. Semantic segmentation algorithm Deeplab V3 with Xception backbone was used for model training. Results: The model uses an image as input and produces a 2-dimensional black and white output of prediction of the same dimension; the areas determined to be basal cell carcinoma were displayed with white color, in a black background. Any output with the number of white pixels exceeding 0.5% of the total number of pixels is deemed positive for basal cell carcinoma. On the test set, the model achieves area under curve of 0.99 for receiver operator curve and 0.97 for precision-recall curve at the pixel level. The accuracy of classification at the slide level is 96%. Conclusions: The deep learning model trained with mobile phone images shows satisfactory performance characteristics, and thus demonstrates the potential for deploying as a mobile phone app to assist in frozen section interpretation in real time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源