论文标题
$ \ mathrm {pgl} _ {k+1}(\ mathbb {c})$ of prime Order组的共同类别类别
Conjugacy classes of groups of prime order in $\mathrm{PGL}_{k+1}(\mathbb{C})$
论文作者
论文摘要
令$ \ mathbb {c} $为复数的字段。让$ k $是自然的数字,$ k \ geq 2 $,让$ p $成为理性的素数。在本文中,我们计算了$ \ mathrm {pgl} _ {k+1}(\ Mathbb {c})$ P $的可允许的环环子群的数量$ \ mathbb {p}^k(\ mathbb {c})$一般位置和基数$ n \ geq k+3 $。我们还描述了这些组的共轭类别之间的一种关联,并显示了连接这种类型的关联与点集之间的关联的美丽关系。
Let $\mathbb{C}$ be the field of complex numbers. Let $k$ be natural number with $k \geq 2$ and let $p$ be a rational prime. In this paper we count the number of conjugacy classes of admissible cyclic subgroups of $\mathrm{PGL}_{k+1}(\mathbb{C})$ of order $p$, where with admissible we intend those finite subgroups that can be contained in the automorphism group of a set of points in $\mathbb{P}^k(\mathbb{C})$ in general position and of cardinality $n\geq k+3$. We also describe a kind of association between the conjugacy classes of these groups and show a beautiful relation connecting this type of association and the association between point sets.