论文标题

强大的无监督的小区域更改检测从SAR图像使用深度学习

Robust Unsupervised Small Area Change Detection from SAR Imagery Using Deep Learning

论文作者

Zhang, Xinzheng, Su, Hang, Zhang, Ce, Gu, Xiaowei, Tan, Xiaoheng, Atkinson, Peter M.

论文摘要

合成孔径雷达(SAR)的小面积变化检测是一项高度挑战的任务。在本文中,提出了一种强大的无监督方法,用于使用深度学习从多阶段的SAR图像进行小面积变化检测。首先,开发了一种多尺度的超级像素重建方法来生成差异图像(DI),该方法可以通过利用局部,空间均匀的信息来有效地抑制斑点噪声并增强边缘。其次,提出了一种两阶段中心的模糊c均值聚类算法将DI的像素分为更改,不变和中间类,并具有平行的聚类策略。然后将属于前两个类别的图像贴片构造为伪标签训练样本,中间类的图像贴片被视为测试样品。最后,设计和训练了卷积小波神经网络(CWNN),以将测试样品分类为更改或不变类别,并与深度卷积生成的对抗网络(DCGAN)相结合,以增加伪标签训练样本中更改类别的类数。在四个真实SAR数据集上进行的数值实验证明了所提出方法的有效性和鲁棒性,可在小面积变化检测中获得高达99.61%的精度。

Small area change detection from synthetic aperture radar (SAR) is a highly challenging task. In this paper, a robust unsupervised approach is proposed for small area change detection from multi-temporal SAR images using deep learning. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源