论文标题

一个修饰的重力模型,在2D空间中耦合到二二次的二次非心理和曲率

A modified gravity model coupled to a Dirac field in 2D spacetimes with quadratic nonmetricity and curvature

论文作者

Pala, Caglar, Kok, Ertan, Sert, Ozcan, Adak, Muzaffer

论文摘要

在总结了外部代数的基本概念之后,我们首先讨论了基本歧管上束的规格结构,以在任何维度上决定总拉格朗日的重力部门的形式。然后,我们将一个狄拉克纺纱球场与我们的重力拉格朗日2形形式融为一体,这在非公称上是二次的,并且在两个维度的曲率上是线性和二次的。随后,我们通过改变相对于自变量的总拉格朗日来获得场方程。最后,我们找到了真空理论的一些类别的解决方案,然后在特定背景中找到了dirac方程的解决方案并分析它们。

After summarizing basic concepts for the exterior algebra we firstly discuss the gauge structure of the bundle over base manifold for deciding the form of the gravitational sector of the total Lagrangian in any dimensions. Then we couple minimally a Dirac spinor field to our gravitational Lagrangian 2-form which is quadratic in the nonmetricity and both linear and quadratic in the curvature in two dimensions. Subsequently we obtain field equations by varying the total Lagrangian with respect to the independent variables. Finally we find some classes of solutions of the vacuum theory and then a solution of the Dirac equation in a specific background and analyse them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源