论文标题
聚合物纳米颗粒混合物中聚合物扩散理论:纳米颗粒浓度和聚合物长度的影响
Theory of polymer diffusion in polymer-nanoparticle mixtures: effect of nanoparticle concentration and polymer length
论文作者
论文摘要
聚合物 - 纳米颗粒(NP)混合物的动力学涉及多个尺度和系统特异性变量,对其理论描述提出了长期的挑战。在本文中,我们基于广义langevin方程,模式耦合方法和聚合物物理学思想的组合构建了一种用于聚合物扩散的显微镜理论。无参数理论具有明确的表达,并且在对系统特异性平衡结构作为输入的配对相关水平上仍然可以进行处理。以最小的聚合物-NP混合物为例,我们的理论正确地捕获了聚合物扩散对NP浓度和平均颗粒间距离的依赖性。重要的是,聚合物扩散表现出功率定律的衰减,因为聚合物长度在致密的NP和/或长链下增加,这标志着纠缠式运动的出现。这项工作为研究各种聚合物纳米复合材料的动态问题提供了第一原理理论基础。
The dynamics of polymer-nanoparticle (NP) mixtures, which involves multiple scales and system-specific variables, has posed a long-standing challenge on its theoretical description. In this paper, we construct a microscopic theory for polymer diffusion in the mixtures based on a combination of generalized Langevin equation, mode-coupling approach, and polymer physics ideas. The parameter-free theory has an explicit expression and remains tractable on pair correlation level with system-specific equilibrium structures as input. Taking a minimal polymer-NP mixture as an example, our theory correctly captures the dependence of polymer diffusion on NP concentration and average interparticle distance. Importantly, the polymer diffusion exhibits a power law decay as the polymer length increases at dense NPs and/or long chain, which marks the emergence of entanglement-like motion. The work provides a first-principle theoretical foundation to investigate dynamic problems in diverse polymer nanocomposites.