论文标题

改进的量子数据分析

Improved quantum data analysis

论文作者

Bădescu, Costin, O'Donnell, Ryan

论文摘要

我们在量子数据分析中提供了一些基本例程的更多样本效率版本,以及更简单的证明。特别是,我们提供了一种量子“阈值搜索”算法,该算法仅需要$ o(((\ log^2 m)/ε^2)$ d $二维状态$ρ$的$样本。也就是说,可以观察到$ 0 \ le a_1,a_2,...,a_m \ le 1 $ 1 $,以至于$ \ mathrm {tr}(ρa_i)(ρa_i)\ ge 1/2 $至少一个$ i $,algorithm找到$ j $ with $ j $,带有$ \ nathrm {tr}(tr}(tr}(ρa_j_ pe ge 1/2-)结果,我们获得了一个阴影层析成像算法,仅需要$ \ tilde {o}(((\ log^2 m)(\ log d d)/ε^4)$样本,同时可以实现每个参数$ m $,$ d $,$ d $,$ d $,$ε$。这产生了相同的样本复杂性,用于$ m $状态之间的量子假设选择;我们还使用$ \ tilde {o}(((\ log^3 m)/ε^2)$样本提供了一种替代假设选择方法。

We provide more sample-efficient versions of some basic routines in quantum data analysis, along with simpler proofs. Particularly, we give a quantum "Threshold Search" algorithm that requires only $O((\log^2 m)/ε^2)$ samples of a $d$-dimensional state $ρ$. That is, given observables $0 \le A_1, A_2, ..., A_m \le 1$ such that $\mathrm{tr}(ρA_i) \ge 1/2$ for at least one $i$, the algorithm finds $j$ with $\mathrm{tr}(ρA_j) \ge 1/2-ε$. As a consequence, we obtain a Shadow Tomography algorithm requiring only $\tilde{O}((\log^2 m)(\log d)/ε^4)$ samples, which simultaneously achieves the best known dependence on each parameter $m$, $d$, $ε$. This yields the same sample complexity for quantum Hypothesis Selection among $m$ states; we also give an alternative Hypothesis Selection method using $\tilde{O}((\log^3 m)/ε^2)$ samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源