论文标题
透明对象跟踪基准测试
Transparent Object Tracking Benchmark
论文作者
论文摘要
近年来,视觉跟踪取得了很大的进步。但是,该领域的当前研究主要集中于跟踪不透明的对象,而对透明对象跟踪的关注很少。在本文中,我们首次尝试通过提出透明的对象跟踪基准(TOTB)来探索这个问题。具体而言,TOTB由15个透明对象类别的225个视频(86K帧)组成。每个序列都用轴对齐的边界框手动标记。据我们所知,TOTB是第一个专门针对透明对象跟踪的基准。为了了解现有的跟踪器的性能并为TOTB的未来研究提供比较,我们广泛评估了25种最先进的跟踪算法。评估结果表明,需要更多的努力来改善透明的对象跟踪。此外,我们观察到评估中的一些非平凡发现,这些发现与不透明对象跟踪的一些共同信念相差。例如,我们发现更深层次的功能并不总是有利于改进。此外,为了鼓励未来的研究,我们介绍了一个名为Transatom的小说跟踪器,该追踪器利用透明度功能来跟踪和超过所有25种评估的方法。通过发布TOTB,我们希望促进学术界和行业中透明对象跟踪的未来研究和应用。 TOTB和评估结果以及Transatom可在https://hengfan2010.github.io/projects/totb上获得。
Visual tracking has achieved considerable progress in recent years. However, current research in the field mainly focuses on tracking of opaque objects, while little attention is paid to transparent object tracking. In this paper, we make the first attempt in exploring this problem by proposing a Transparent Object Tracking Benchmark (TOTB). Specifically, TOTB consists of 225 videos (86K frames) from 15 diverse transparent object categories. Each sequence is manually labeled with axis-aligned bounding boxes. To the best of our knowledge, TOTB is the first benchmark dedicated to transparent object tracking. In order to understand how existing trackers perform and to provide comparison for future research on TOTB, we extensively evaluate 25 state-of-the-art tracking algorithms. The evaluation results exhibit that more efforts are needed to improve transparent object tracking. Besides, we observe some nontrivial findings from the evaluation that are discrepant with some common beliefs in opaque object tracking. For example, we find that deeper features are not always good for improvements. Moreover, to encourage future research, we introduce a novel tracker, named TransATOM, which leverages transparency features for tracking and surpasses all 25 evaluated approaches by a large margin. By releasing TOTB, we expect to facilitate future research and application of transparent object tracking in both the academia and industry. The TOTB and evaluation results as well as TransATOM are available at https://hengfan2010.github.io/projects/TOTB.