论文标题

Sobolev空间中的大约扩展

Approximate Extension in Sobolev Space

论文作者

Drake, Marjorie K.

论文摘要

令$ l^{m,p}(\ mathbb {r}^n)$是$ p \ in(n,\ infty)$,$μ$的同质sobolev空间,是$ \ m athbb {r}^n $和$ l^n $和$ l^{m,p}的borel常规度量(具有有限seminorm $ \ | f \ | _ {l^{m,p}(\ mathbb {r}^n) + l^p(dμ)}:= \ text {inft} _ {f_1 + f_1 + f_2 = f_2 = f_2 = f_2 = f_2 = f_2 = f_2 = f_2 = f_2 = f_2 \ | f_1 \ | _ {l^{m,p}(\ Mathbb {r}^n)}^p + \ int _ {\ Mathbb {r}^n} | f_2 | f_2 |^pdμ\}^{1/p} $。我们构造一个线性操作员$ t:l^{m,p}(\ mathbb {r}^n) + l^p(dμ)\ to l^{m,p}(\ mathbb {r}^n)$,几乎最佳地将每个功能分解在总和空间中: $ \ | tf \ | _ {l^{m,p}(\ Mathbb {r}^n)}^p + \ int _ {\ Mathbb {\ Mathbb {r}^n} | l^p(dμ)}^p $,$ c $依赖于$ m $,$ n $和$ p $。对于$ e \ subset \ mathbb {r}^n $,让$ l^{m,p}(e)$表示所有限制的空间,in l^{m,p}(\ mathbb {r}^n)$,配备标准痕迹seminorm。对于$ p \ in(n,\ infty)$,我们构造了线性扩展运算符$ t:l^{m,p}(e)\ to l^{m,p}(\ m athbb {r}^n)$满意$ \ | tf \ | _ {l^{m,p}(\ mathbb {r}^n)} \ leq c \ | f \ | _ {l^{m,p}(e)} $,其中$ c $仅取决于$ n $,$ m $和$ p $。我们显示这些运算符可以通过线性功能的集合来表示,其支持的重叠有限。

Let $L^{m,p}(\mathbb{R}^n)$ be the homogeneous Sobolev space for $p \in (n,\infty)$, $μ$ be a Borel regular measure on $\mathbb{R}^n$, and $L^{m,p}(\mathbb{R}^n) + L^p(dμ)$ be the space of Borel measurable functions with finite seminorm $\|f\|_{L^{m,p}(\mathbb{R}^n) + L^p(dμ)} := \text{inf}_{f_1 +f_2 = f} \{ \|f_1\|_{L^{m,p}(\mathbb{R}^n)}^p + \int_{\mathbb{R}^n} |f_2|^p dμ\}^{1/p}$. We construct a linear operator $T:L^{m,p}(\mathbb{R}^n) + L^p(dμ) \to L^{m,p}(\mathbb{R}^n)$, that nearly optimally decomposes every function in the sum space: $\|Tf\|_{L^{m,p}(\mathbb{R}^n)}^p + \int_{\mathbb{R}^n} |Tf-f|^p dμ\leq C \|f\|_{L^{m,p}(\mathbb{R}^n) + L^p(dμ)}^p$ with $C$ dependent on $m$, $n$, and $p$ only. For $E \subset \mathbb{R}^n$, let $L^{m,p}(E)$ denote the space of all restrictions to $E$ of functions $F \in L^{m,p}(\mathbb{R}^n)$, equipped with the standard trace seminorm. For $p \in (n, \infty)$, we construct a linear extension operator $T:L^{m,p}(E) \to L^{m,p}(\mathbb{R}^n)$ satisfying $Tf|_E = f|_E$ and $\|Tf\|_{L^{m,p}(\mathbb{R}^n)} \leq C \|f\|_{L^{m,p}(E)}$, where $C$ depends only on $n$, $m$, and $p$. We show these operators can be expressed through a collection of linear functionals whose supports have bounded overlap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源