论文标题

使用反向梯度关注的强大数据隐藏

Robust Data Hiding Using Inverse Gradient Attention

论文作者

Zhang, Honglei, Wang, Hu, Cao, Yuanzhouhan, Shen, Chunhua, Li, Yidong

论文摘要

数据隐藏是将所需信息编码为某种类型的封面介质(例如图像)的过程,以抵抗潜在的数据恢复噪声,同时确保嵌入式图像几乎没有感知扰动。最近,随着深层神经网络在各个领域取得的巨大成功,对数据隐藏的研究隐藏着深度学习模型,引起了人们越来越多的关注。在深度数据隐藏模型中,为了最大化编码能力,封面图像的每个像素都应受到不同的处理,因为它们具有不同的敏感性W.R.T.视觉质量。忽视考虑每个像素的灵敏度不可避免地会影响模型隐藏信息的鲁棒性。在本文中,我们提出了一种新型的深度数据隐藏方案,并具有反向梯度注意力(IGA),将注意机制的概念结合在一起,以赋予不同像素的不同注意力重量。该模型配备了提出的模块,可以将更强的数据隐藏点聚焦像素。广泛的实验表明,所提出的模型在多个评估指标下的两个普遍数据集上的基于深度学习的数据隐藏方法优于主流深度学习的数据隐藏方法。此外,我们进一步识别并讨论了图像中提出的反向梯度关注与高频区域之间的联系,这可以作为对深度数据隐藏研究社区的信息参考。这些代码可在以下网址提供:https://github.com/hongleizhang/iga。

Data hiding is the procedure of encoding desired information into a certain types of cover media (e.g. images) to resist potential noises for data recovery, while ensuring the embedded image has few perceptual perturbations. Recently, with the tremendous successes gained by deep neural networks in various fields, the research on data hiding with deep learning models has attracted an increasing amount of attentions. In deep data hiding models, to maximize the encoding capacity, each pixel of the cover image ought to be treated differently since they have different sensitivities w.r.t. visual quality. The neglecting to consider the sensitivity of each pixel inevitably affects the model's robustness for information hiding. In this paper, we propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combining the idea of attention mechanism to endow different attention weights for different pixels. Equipped with the proposed modules, the model can spotlight pixels with more robustness for data hiding. Extensive experiments demonstrate that the proposed model outperforms the mainstream deep learning based data hiding methods on two prevalent datasets under multiple evaluation metrics. Besides, we further identify and discuss the connections between the proposed inverse gradient attention and high-frequency regions within images, which can serve as an informative reference to the deep data hiding research community. The codes are available at: https://github.com/hongleizhang/IGA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源