论文标题
数据驱动的系统级合成
Data-Driven System Level Synthesis
论文作者
论文摘要
我们建立了系统级综合(SLS)的数据驱动版本,该版本是在有限的摩托子上使用线性时间不变系统的可实现的闭环系统响应的参数化。受数据驱动控制的最新工作的启发,该控制利用行为理论的工具,我们表明,仅使用过去系统轨迹的库来提出优化问题,而无需明确识别系统模型。我们首先考虑理想化的无噪声轨迹设置,并在传统和数据驱动的SLS之间显示出确切的等效性。然后,我们证明,在过程噪声驱动的系统中,可使用稳健SLS的工具可用于表征噪声对闭环性能的影响,并进一步借鉴矩阵浓度的工具,以表明可以使用简单的轨迹平均技术来减轻这些效果。我们以数值实验结尾,显示了我们方法的健全性。
We establish data-driven versions of the System Level Synthesis (SLS) parameterization of achievable closed-loop system responses for a linear-time-invariant system over a finite-horizon. Inspired by recent work in data-driven control that leverages tools from behavioral theory, we show that optimization problems over system-responses can be posed using only libraries of past system trajectories, without explicitly identifying a system model. We first consider the idealized setting of noise free trajectories, and show an exact equivalence between traditional and data-driven SLS. We then show that in the case of a system driven by process noise, tools from robust SLS can be used to characterize the effects of noise on closed-loop performance, and further draw on tools from matrix concentration to show that a simple trajectory averaging technique can be used to mitigate these effects. We end with numerical experiments showing the soundness of our methods.