论文标题
使用多源数据的分布式稳健状态估计对混合AC/DC分配系统
Distributed Robust State Estimation for Hybrid AC/DC Distribution Systems using Multi-Source Data
论文作者
论文摘要
混合AC/DC分销系统正在成为一种流行的手段,以适应分布式能源和柔性载荷的渗透。本文提出了使用多个数据源为混合AC/DC分布系统进行分布式稳健的状态估计方法(DRSE)方法。在拟议的分布式实施框架中,为每个AC和DC区域得出了一个统一的鲁棒线性估计模型,其中区域是通过AC/DC转换器连接的,仅需要有限的信息交换。为了提高测量覆盖率低的区域的估计精度,使用深神经网络(DNN)来提取隐藏的系统统计信息,并允许衍生淋巴结注射,以跟上实时测量更新率的跟上。这提供了将智能电表数据,SCADA测量和零注射量集成在一起的方法,以进行状态估计。对两个混合AC/DC分配系统的模拟表明,所提出的DRSE仅通过线性化公式具有轻微的准确性损失,但可以自动抑制不良数据,以及提高计算效率的好处。
Hybrid AC/DC distribution systems are becoming a popular means to accommodate the increasing penetration of distributed energy resources and flexible loads. This paper proposes a distributed and robust state estimation (DRSE) method for hybrid AC/DC distribution systems using multiple sources of data. In the proposed distributed implementation framework, a unified robust linear state estimation model is derived for each AC and DC regions, where the regions are connected via AC/DC converters and only limited information exchange is needed. To enhance the estimation accuracy of the areas with low measurement coverage, a deep neural network (DNN) is used to extract hidden system statistical information and allow deriving nodal power injections that keep up with the real-time measurement update rate. This provides the way of integrating smart meter data, SCADA measurements and zero injections together for state estimation. Simulations on two hybrid AC/DC distribution systems show that the proposed DRSE has only slight accuracy loss by the linearization formulation but offers robustness of suppressing bad data automatically, as well as benefits of improving computational efficiency.