论文标题
延长来自足够亚不同的合理连接纤维
Extending rationally connected fibrations from ample subvarieties
论文作者
论文摘要
使用理性曲线的变形理论,我们证明了索尔姆斯对形态的扩展性的猜想,当形态是一种平滑(或轻度奇异的)纤维,并具有理性连接的纤维。我们将此结果应用于FANO振动的背景下,并证明了对富含亚体段的投影束和四元纤维纤维结构的分类定理。
Using deformation theory of rational curves, we prove a conjecture of Sommese on the extendability of morphisms from ample subvarieties when the morphism is a smooth (or mildly singular) fibration with rationally connected fibers. We apply this result in the context of Fano fibrations and prove a classification theorem for projective bundle and quadric fibration structures on ample subvarieties.