论文标题

在移动性下,在移动宽带网络中进行带宽预测的长期短期存储网络

Long Short Term Memory Networks for Bandwidth Forecasting in Mobile Broadband Networks under Mobility

论文作者

Kousias, Konstantinos, Pappas, Apostolos, Alay, Ozgu, Argyriou, Antonios, Riegler, Michael

论文摘要

移动宽带(MBB)网络中的带宽预测是一项具有挑战性的任务,尤其是在具有一定程度的机动性时。在这项工作中,我们引入了Hindsight ++,这是一个基于长期内存(LSTM)网络的MBB网络中基于开源R的带宽预测实验的框架。在自动化机器学习(AUTOML)范式之后,我们仪器是事后的++,首先减轻数据预处理负担,其次是增强与绩效相关的方面。我们主要关注第五代(5G)网络的带宽预测。特别是,我们利用了5gophers,这是第一个开源试图衡量美国运营5G网络上网络性能的尝试。我们进一步探索了使用NYU-MET的第四代(4G)商业设置的LSTM性能边界,NYU-MET是一个由数百个带宽痕迹组成的开源数据集,其中包含不同的移动性场景。我们的研究旨在研究超参数优化对实现最先进绩效的影响。结果强调了其在5G方案下的重要性,与先前的最新值相比,平均平均绝对误差(MAE)接近30%。由于其通用设计,我们认为Hindsight ++可以用作其他科学领域多种应用程序的方便软件工具。

Bandwidth forecasting in Mobile Broadband (MBB) networks is a challenging task, particularly when coupled with a degree of mobility. In this work, we introduce HINDSIGHT++, an open-source R-based framework for bandwidth forecasting experimentation in MBB networks with Long Short Term Memory (LSTM) networks. We instrument HINDSIGHT++ following an Automated Machine Learning (AutoML) paradigm to first, alleviate the burden of data preprocessing, and second, enhance performance related aspects. We primarily focus on bandwidth forecasting for Fifth Generation (5G) networks. In particular, we leverage 5Gophers, the first open-source attempt to measure network performance on operational 5G networks in the US. We further explore the LSTM performance boundaries on Fourth Generation (4G) commercial settings using NYU-METS, an open-source dataset comprising of hundreds of bandwidth traces spanning different mobility scenarios. Our study aims to investigate the impact of hyperparameter optimization on achieving state-of-the-art performance and beyond. Results highlight its significance under 5G scenarios showing an average Mean Absolute Error (MAE) decrease of near 30% when compared to prior state-of-the-art values. Due to its universal design, we argue that HINDSIGHT++ can serve as a handy software tool for a multitude of applications in other scientific fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源