论文标题
使用小流动时间扩展方法,在SU(3)SU(3)Yang-Mills理论的一阶解切相过渡时的潜热和压力隙
Latent heat and pressure gap at the first-order deconfining phase transition of SU(3) Yang-Mills theory using the small flow-time expansion method
论文作者
论文摘要
我们研究了SU(3)Yang-Mills理论的一阶解切相过渡温度的热和冷相之间的潜热和压力差。在具有各种空间体积和晶格间距的晶格上进行模拟,我们使用较小的流动时间扩展(SFTX)方法计算了能量密度和压力的间隙。我们发现,连续限制中的潜热$δε$为$δε/t^4 = 1.117 \ pm 0.040 $的宽高比$ n_s/n_t = 8 $和$ 1.349 \ pm 0.038 $ 0.038 $ for $ n_s/n_s/n_s/n_t = 6 $在过渡温度$ t = t_c $。我们还确认,从$ t_c $的两个阶段的动态平衡中,压力差与零是一致的。从$ t_c $接近能量密度的磁滞曲线中,我们表明(亚稳态)解抗相位的能量密度对空间体积敏感,而在狭窄相中的能量密度不敏感。此外,我们在SFTX方法中研究了替代程序的效果 - 连续体和消失的流动时间外推,以及匹配系数中的重新归一化量表和高阶校正。我们确认,对于这些替代方案,最终结果都是非常一致的。
We study latent heat and the pressure gap between the hot and cold phases at the first-order deconfining phase transition temperature of the SU(3) Yang-Mills theory. Performing simulations on lattices with various spatial volumes and lattice spacings, we calculate the gaps of the energy density and pressure using the small flow-time expansion (SFtX) method. We find that the latent heat $Δε$ in the continuum limit is $Δε/T^4 = 1.117 \pm 0.040$ for the aspect ratio $N_s/N_t=8$ and $1.349 \pm 0.038$ for $N_s/N_t=6$ at the transition temperature $T=T_c$. We also confirm that the pressure gap is consistent with zero, as expected from the dynamical balance of two phases at $T_c$. From hysteresis curves of the energy density near $T_c$, we show that the energy density in the (metastable) deconfined phase is sensitive to the spatial volume, while that in the confined phase is insensitive. Furthermore, we examine the effect of alternative procedures in the SFtX method - the order of the continuum and the vanishing flow-time extrapolations, and also the renormalization scale and higher-order corrections in the matching coefficients. We confirm that the final results are all very consistent with each other for these alternatives.