论文标题
DODNET:学会从多个部分标记的数据集中分割多器官和肿瘤
DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets
论文作者
论文摘要
由于在体素水平上注释3D医疗图像方面的劳动力和专业知识的高度成本,因此大多数基准数据集都配备了一种只有一种器官和/或肿瘤的注释,从而导致了所谓的部分标记问题。为了解决这个问题,我们提出了一个动态的按需网络(DODNET),该网络学会在部分标记的数据集上分割多个器官和肿瘤。 DODNET由共享的编码器架构,一个任务编码模块,用于生成动态卷积过滤器的控制器以及单个但动态的分割头。当前细分任务的信息被编码为任务意识到,然后告诉模型该任务预期要解决什么。与训练后固定内核的现有方法不同,动态头中的内核是由控制器自适应生成的,并在输入图像和分配的任务上进行条件。因此,DODNET能够以多个网络或多头网络完成多个器官和肿瘤,以非常有效且灵活的方式进行分割。我们创建了一个大规模的部分标记的数据集,称为MOTS,并证明了DODNET在七个器官和肿瘤分段任务上的出色表现。我们还将预先训练的权重转移到了下游多器官分段任务,并实现了最先进的性能。这项研究提供了一个一般的3D医疗图像分割模型,该模型已在大规模的部分标记的数据集上进行了预训练,并且可以扩展(微调后)以下游体积的医学数据分割任务。数据集和代码区域Vailableat:https://git.io/dodnet
Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of only one type of organs and/or tumors, resulting in the so-called partially labeling issue. To address this, we propose a dynamic on-demand network (DoDNet) that learns to segment multiple organs and tumors on partially labeled datasets. DoDNet consists of a shared encoder-decoder architecture, a task encoding module, a controller for generating dynamic convolution filters, and a single but dynamic segmentation head. The information of the current segmentation task is encoded as a task-aware prior to tell the model what the task is expected to solve. Different from existing approaches which fix kernels after training, the kernels in dynamic head are generated adaptively by the controller, conditioned on both input image and assigned task. Thus, DoDNet is able to segment multiple organs and tumors, as done by multiple networks or a multi-head network, in a much efficient and flexible manner. We have created a large-scale partially labeled dataset, termed MOTS, and demonstrated the superior performance of our DoDNet over other competitors on seven organ and tumor segmentation tasks. We also transferred the weights pre-trained on MOTS to a downstream multi-organ segmentation task and achieved state-of-the-art performance. This study provides a general 3D medical image segmentation model that has been pre-trained on a large-scale partially labelled dataset and can be extended (after fine-tuning) to downstream volumetric medical data segmentation tasks. The dataset and code areavailableat: https://git.io/DoDNet