论文标题

基于隔室模型的非线性脱节,用于动态PET图像的动力学分析

Compartment model-based nonlinear unmixing for kinetic analysis of dynamic PET images

论文作者

Cavalcanti, Yanna Cruz, Oberlin, Thomas, Ferraris, Vinicius, Dobigeon, Nicolas, Ribeiro, Maria, Tauber, Clovis

论文摘要

当没有动脉输入函数可用时,动态PET图像的量化需要上一步,该步骤用于提取参考时间活性曲线(TAC)。因子分析通常用于此目的。本文介绍了一种新型方法,该方法依靠隔室模型进行了一种新型的非线性因子分析,并共同计算特定结合组织的动力学参数。为此,它利用了数据驱动的参数成像方法,以提供基础PET数据的物理描述,将特定结合与相应组织中非特异性结合的动力学直接相关。将此表征引入了因子分析公式中,以产生用于PET图像分析设计的新型非线性Unmixing模型。该模型还明确引入了全局动力学参数,该参数可以直接估算每个非特异性结合组织中的自由分数。该方法的性能在合成和实际数据上进行了评估,以证明其潜在的兴趣。

When no arterial input function is available, quantification of dynamic PET images requires a previous step devoted to the extraction of a reference time-activity curve (TAC). Factor analysis is often applied for this purpose. This paper introduces a novel approach that conducts a new kind of nonlinear factor analysis relying on a compartment model, and computes the kinetic parameters of specific binding tissues jointly. To this end, it capitalizes on data-driven parametric imaging methods to provide a physical description of the underlying PET data, directly relating the specific binding with the kinetics of the non-specific binding in the corresponding tissues. This characterization is introduced into the factor analysis formulation to yield a novel nonlinear unmixing model designed for PET image analysis. This model also explicitly introduces global kinetic parameters that allow for a direct estimation of the binding potential with respect to the free fractions in each non-specific binding tissue. The performance of the method is evaluated on synthetic and real data to demonstrate its potential interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源