论文标题

分支过程中具有多种类型的分支过程中的灭绝概率:一般框架

Extinction probabilities in branching processes with countably many types: a general framework

论文作者

Bertacchi, Daniela, Braunsteins, Peter, Hautphenne, Sophie, Zucca, Fabio

论文摘要

我们考虑使用可计数的类型$ \ Mathcal {x} $的Galton-Watson分支过程。我们研究矢量$ {\ bf q}(a)=(q_x(a))_ {x \ in \ Mathcal {x}} $记录在类型$ a \ subseteq \ Mathcal {x} $的类型$ a \ subseteq \ mathcal {x} $的子集中灭绝的条件概率。我们首先研究矢量的位置$ {\ bf q}(a)$在后代生成向量的固定点集中,并证明$ q_x(\ {x \})$大于或等于$ x $的$ x $ th任何固定点的输入,每当$ q_ $ q_ q_ $ q_ q_ x a)(a)(b)(b)<q_x(a)<q_x(a) $ a,b \ subseteq \ mathcal {x} $。最后,我们开发了一个一般框架来表征所有\ emph {不同的}灭绝概率向量,从而确定是否有很多有限的,数量很多,或者是无数截然不同的向量。我们以示例来说明结果,并以开放的问题结论。

We consider Galton-Watson branching processes with countable typeset $\mathcal{X}$. We study the vectors ${\bf q}(A)=(q_x(A))_{x\in\mathcal{X}}$ recording the conditional probabilities of extinction in subsets of types $A\subseteq \mathcal{X}$, given that the type of the initial individual is $x$. We first investigate the location of the vectors ${\bf q}(A)$ in the set of fixed points of the progeny generating vector and prove that $q_x(\{x\})$ is larger than or equal to the $x$th entry of any fixed point, whenever it is different from 1. Next, we present equivalent conditions for $q_x(A)< q_x (B)$ for any initial type $x$ and $A,B\subseteq \mathcal{X}$. Finally, we develop a general framework to characterise all \emph{distinct} extinction probability vectors, and thereby to determine whether there are finitely many, countably many, or uncountably many distinct vectors. We illustrate our results with examples, and conclude with open questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源