论文标题

提高了预测和鉴定部分观察到的线性动力学系统的速率

Improved rates for prediction and identification of partially observed linear dynamical systems

论文作者

Lee, Holden

论文摘要

从部分观察中识别线性​​时间不变的动力系统是控制理论中的一个基本问题。特别具有挑战性的是展示长期记忆的系统。一个自然的问题是,如何根据固有的维度(顺序)$ d $而不是更大的内存长度来学习非质子统计率的学习系统。我们提出了一种算法,该算法在高斯观察噪声中给出了一个长度$ t $的单个轨迹,以几乎最佳的速率$ \ widetilde o \ left(\ sqrt \ sqrt \ frac {d} {t} {t} \ right)$ in $ \ \ \ \ \ \ mathcal {我们还为过程噪声提供了界限,并改善了学习系统实现的界限。我们的算法基于多尺度的低级别近似:SVD应用于几何增加尺寸的Hankel矩阵。我们的分析依赖于在傅立叶域上仔细应用浓度界限 - 我们为相关输入的样本协方差和$ \ Mathcal H_ \ Infty $ norm估计提供了更清晰的浓度界限,这可能是独立的。

Identification of a linear time-invariant dynamical system from partial observations is a fundamental problem in control theory. Particularly challenging are systems exhibiting long-term memory. A natural question is how learn such systems with non-asymptotic statistical rates depending on the inherent dimensionality (order) $d$ of the system, rather than on the possibly much larger memory length. We propose an algorithm that given a single trajectory of length $T$ with gaussian observation noise, learns the system with a near-optimal rate of $\widetilde O\left(\sqrt\frac{d}{T}\right)$ in $\mathcal{H}_2$ error, with only logarithmic, rather than polynomial dependence on memory length. We also give bounds under process noise and improved bounds for learning a realization of the system. Our algorithm is based on multi-scale low-rank approximation: SVD applied to Hankel matrices of geometrically increasing sizes. Our analysis relies on careful application of concentration bounds on the Fourier domain -- we give sharper concentration bounds for sample covariance of correlated inputs and for $\mathcal H_\infty$ norm estimation, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源