论文标题
电动汽车充电基础设施计划:可扩展的计算框架
Electric Vehicle Charging Infrastructure Planning: A Scalable Computational Framework
论文作者
论文摘要
由于运输系统和电网的网络大小的增加,在大型地理空间区域上的最佳充电基础设施计划问题令人挑战。因此,电动汽车旅行行为与充电事件之间的耦合很复杂。本文着重于在紧密整合的运输和电网网络上进行电动汽车充电基础设施计划的可扩展计算框架的演示。在运输方面,提出了一种充电概况生成策略,以利用EV能源消耗模型,行程路由和充电器选择方法。在网格侧,在最佳功率流程计划中使用了一种遗传算法来解决最佳的充电器放置问题,并通过自适应评估当前迭代中的候选解决方案并为下一个迭代生成新的解决方案,从而解决了最佳的充电器放置问题。
The optimal charging infrastructure planning problem over a large geospatial area is challenging due to the increasing network sizes of the transportation system and the electric grid. The coupling between the electric vehicle travel behaviors and charging events is therefore complex. This paper focuses on the demonstration of a scalable computational framework for the electric vehicle charging infrastructure planning over the tightly integrated transportation and electric grid networks. On the transportation side, a charging profile generation strategy is proposed leveraging the EV energy consumption model, trip routing, and charger selection methods. On the grid side, a genetic algorithm is utilized within the optimal power flow program to solve the optimal charger placement problem with integer variables by adaptively evaluating candidate solutions in the current iteration and generating new solutions for the next iterations.