论文标题
二次Clifford扩展,用于有效的基准测试和初始化变化量子算法
Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms
论文作者
论文摘要
变异量子算法被认为是近期量子计算机的吸引力应用。但是,目前尚不清楚他们是否可以胜过古典算法。为了揭示他们的局限性,我们必须寻求一种在大规模问题上对其进行基准测试的技术。在这里,我们提出了一种扰动方法,以有效地基准变异量子算法。所提出的技术执行由Clifford和Pauli旋转门组成的电路的扰动扩展,该电路通过利用Clifford电路的经典模拟性来实现。我们的方法可以应用于由Clifford门和单Qubit旋转门组成的广泛的参数化量子电路家族。该方法获得的近似最佳参数也可以作为对量子设备进行进一步优化的初始猜测,该量子设备可能有可能解决所谓的``Barren-Plateau''问题。作为该方法的第一个应用,我们在将其应用于一维氢链的VQE时,将它们应用于所谓的硬件效率型ansatzes,最高为$ 48 $ QUBIT SYSTEM,使用标准工人。
Variational quantum algorithms are considered to be appealing applications of near-term quantum computers. However, it has been unclear whether they can outperform classical algorithms or not. To reveal their limitations, we must seek a technique to benchmark them on large scale problems. Here, we propose a perturbative approach for efficient benchmarking of variational quantum algorithms. The proposed technique performs perturbative expansion of a circuit consisting of Clifford and Pauli rotation gates, which is enabled by exploiting the classical simulatability of Clifford circuits. Our method can be applied to a wide family of parameterized quantum circuits consisting of Clifford gates and single-qubit rotation gates. The approximate optimal parameter obtained by the method can also serve as an initial guess for further optimizations on a quantum device, which can potentially solve the so-called ``barren-plateau'' problem. As the first application of the method, we perform a benchmark of so-called hardware-efficient-type ansatzes when they are applied to the VQE of one-dimensional hydrogen chains up to $\mathrm{H}_{24}$, which corresponds to $48$-qubit system, using a standard workstation.