论文标题

代表基本真相解释的数据来评估XAI方法

Data Representing Ground-Truth Explanations to Evaluate XAI Methods

论文作者

Amiri, Shideh Shams, Weber, Rosina O., Goel, Prateek, Brooks, Owen, Gandley, Archer, Kitchell, Brian, Zehm, Aaron

论文摘要

目前,使用可解释的人工智能(XAI)方法来评估主要起源于可解释的机器学习(IML)研究的方法,这些方法着重于理解模型,例如与现有归因方法的比较,敏感性分析,一组特征,公理或通过展示图像的比较。这些方法存在问题,例如它们没有指示当前的XAI方法未能指导调查以实现该领域的一致进步。他们没有衡量支持负责任决策的准确性,几乎不可能确定一种XAI方法是否比另一种方法更好或现有模型的弱点更好,而研究人员没有指导研究问题会推进该领域的指导。其他字段通常利用地面真实数据并创建基准测试。代表地面说明的数据通常不在XAI或IML中使用。原因之一是解释是主观的,从某种意义上说,满足用户可能无法满足另一个用户的解释。为了克服这些问题,我们建议用可用于评估XAI方法准确性的规范方程表示解释。本文的贡献包括一种创建代表地面真相解释的合成数据的方法,三个数据集,使用这些数据集对石灰的评估以及对使用这些数据评估现有XAI方法的挑战和潜在好处的初步分析。基于以人为本研究的评估方法不在本文的范围之内。

Explainable artificial intelligence (XAI) methods are currently evaluated with approaches mostly originated in interpretable machine learning (IML) research that focus on understanding models such as comparison against existing attribution approaches, sensitivity analyses, gold set of features, axioms, or through demonstration of images. There are problems with these methods such as that they do not indicate where current XAI approaches fail to guide investigations towards consistent progress of the field. They do not measure accuracy in support of accountable decisions, and it is practically impossible to determine whether one XAI method is better than the other or what the weaknesses of existing models are, leaving researchers without guidance on which research questions will advance the field. Other fields usually utilize ground-truth data and create benchmarks. Data representing ground-truth explanations is not typically used in XAI or IML. One reason is that explanations are subjective, in the sense that an explanation that satisfies one user may not satisfy another. To overcome these problems, we propose to represent explanations with canonical equations that can be used to evaluate the accuracy of XAI methods. The contributions of this paper include a methodology to create synthetic data representing ground-truth explanations, three data sets, an evaluation of LIME using these data sets, and a preliminary analysis of the challenges and potential benefits in using these data to evaluate existing XAI approaches. Evaluation methods based on human-centric studies are outside the scope of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源