论文标题
主动推断和行为树,用于机器人技术中的反应性动作计划和执行
Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics
论文作者
论文摘要
我们提出了在动态环境中进行反应性动作计划和执行的主动推理和行为树(BT)的混合组合,以显示如何将机器人任务作为自由能量最小化问题提出。所提出的方法允许处理部分可观察到的初始状态,并提高经典BT的鲁棒性,同时减少树中的节点数量。在这项工作中,我们通过BTS脱机指定了名义行为。但是,与以前的方法相反,我们引入了一种新型的叶节点来指定要达到的所需状态,而不是执行的措施。通过主动推论在线执行要执行哪种行动以达到所需状态的决定。这导致了不断的在线计划和分层审议。通过这样做,代理可以遵循预定义的离线计划,同时仍保持本地适应并在运行时做出自主决策的能力,从而尊重安全限制。我们提供收敛性和鲁棒性分析的证明,并在两个不同的移动操纵器中验证我们在模拟和真实零售环境中执行相似任务的方法。结果表明,与经典BT相比,与手工编码的节点相比,运行时的适应性提高了。
We propose a hybrid combination of active inference and behavior trees (BTs) for reactive action planning and execution in dynamic environments, showing how robotic tasks can be formulated as a free-energy minimization problem. The proposed approach allows handling partially observable initial states and improves the robustness of classical BTs against unexpected contingencies while at the same time reducing the number of nodes in a tree. In this work, we specify the nominal behavior offline, through BTs. However, in contrast to previous approaches, we introduce a new type of leaf node to specify the desired state to be achieved rather than an action to execute. The decision of which action to execute to reach the desired state is performed online through active inference. This results in continual online planning and hierarchical deliberation. By doing so, an agent can follow a predefined offline plan while still keeping the ability to locally adapt and take autonomous decisions at runtime, respecting safety constraints. We provide proof of convergence and robustness analysis, and we validate our method in two different mobile manipulators performing similar tasks, both in a simulated and real retail environment. The results showed improved runtime adaptability with a fraction of the hand-coded nodes compared to classical BTs.