论文标题

与竞争互动的混合物中的自组装

Self-assembly in mixtures with competing interactions

论文作者

Patsahan, O., Litniewski, M., Ciach, A.

论文摘要

通过理论和分子动力学(MD)模拟研究了与球形对称电位相互作用的二元混合物。我们考虑具有相等直径和体积分数的球形颗粒。由浸入近临界二元溶剂中的不同电荷颗粒与不同的吸附偏好的混合物的动机,我们假设像粒子一样的相互作用和短距离排斥的长距离远程吸引力在不同的相互作用方面具有短距离吸引力的长距离排斥。为了预测这种复杂混合物的结构和热力学特性,我们开发了一种结合密度功能和现场理论方法的理论。我们表明,与平均场预测相比,介质区域的浓度波动会导致相图的质量变化。理论和MD模拟都均显示了低密度无序相具有高密度相的共存,其交替层富含第一组和第二个成分。随着温度的升高,有序相的密度和顺序程度降低,直到该理论预测狭窄的两相区域,而这两个相的密度增加,以增加温度。 MD模拟表明,固体和液体晶体的单晶具有平行于浓度振荡方向的轴形形状,并且偏离球形形状的偏差会随着周期性的增加而增加。

A binary mixture of particles interacting with spherically-symmetric potentials leading to microsegregation is studied by theory and molecular dynamics (MD) simulations. We consider spherical particles with equal diameters and volume fractions. Motivated by the mixture of oppositely charged particles with different adsorption preferences immersed in near-critical binary solvent, we assume short-range attraction long-range repulsion for the interaction between like particles, and short range repulsion long-range attraction for the interaction between different ones. In order to predict structural and thermodynamic properties of such complex mixtures, we develop a theory combining the density functional and field-theoretic methods. We show that concentration fluctuations in mesoscopic regions lead to a qualitative change of the phase diagram compared to mean-field predictions. Both theory and MD simulations show coexistence of a low-density disordered phase with a high-density phase with alternating layers rich in the first and the second component. The density and the degree of order of the ordered phase decrease with increasing temperature, up to a temperature where the theory predicts a narrow two-phase region with increasing density of both phases for increasing temperature. MD simulations show that monocrystals of the solid and liquid crystals have a prolate shape with the axis parallel to the direction of concentration oscillations, and the deviation from the spherical shape increases with increasing periodic order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源