论文标题
一般两极分化的Abelian类型$(1,\ DOTS,1,D)$的较高的Syzygies $
Higher syzygies on general polarized abelian varieties of type $(1,\dots,1,d)$
论文作者
论文摘要
在本文中,我们表明,$(1,\ dots,1,d)$(1,\ dots,d)$的一般两极化的Abelian品种$(x,l)$ and Dimension $ g $满足属性$(N_P)$,如果$ d \ geq \ geq \ sum_ {i = 0}^g}^{g}^{g}(p+2)^i $。尤其是,$ p = 0 $肯定地解决了L. fuentes garc \'ıa在投影正态上的猜想。
In this paper, we show that a general polarized abelian variety $(X,L)$ of type $(1,\dots,1,d)$ and dimension $g$ satisfies property $(N_p)$ if $ d \geq \sum_{i=0}^{g} (p+2)^i$. In particular, the case $p=0$ affirmatively solves a conjecture by L. Fuentes Garc\'ıa on projective normality.