论文标题
使用分离内核来学习大概的前进式可达集
Learning Approximate Forward Reachable Sets Using Separating Kernels
论文作者
论文摘要
我们提出了一种数据驱动的方法,用于使用复制的内核希尔伯特空间中的分离内核来计算近似向前的可触及套件。我们将问题作为支持估计问题,并使用数据驱动的方法将支持的分类器学习为复制内核希尔伯特空间的元素。内核方法为分类器提供了一种计算有效的表示,这是解决最小二乘问题的解决方案。该溶液几乎肯定会随着样本量的增加而收敛,并接收已知的有限样品边界。这种方法适用于通过将网络视为动态系统或将神经网络控制器视为闭环系统的一部分,适用于具有任意干扰和神经网络验证问题的随机系统。我们在几个示例上介绍了我们的技术,包括飞船会合和对接问题,以及带有神经网络控制器的两个非线性系统基准。
We present a data-driven method for computing approximate forward reachable sets using separating kernels in a reproducing kernel Hilbert space. We frame the problem as a support estimation problem, and learn a classifier of the support as an element in a reproducing kernel Hilbert space using a data-driven approach. Kernel methods provide a computationally efficient representation for the classifier that is the solution to a regularized least squares problem. The solution converges almost surely as the sample size increases, and admits known finite sample bounds. This approach is applicable to stochastic systems with arbitrary disturbances and neural network verification problems by treating the network as a dynamical system, or by considering neural network controllers as part of a closed-loop system. We present our technique on several examples, including a spacecraft rendezvous and docking problem, and two nonlinear system benchmarks with neural network controllers.