论文标题
kim- -vu的三明治猜想是正确的,对于$ d \ gg \ log^4 n $
Kim--Vu's sandwich conjecture is true for $d \gg \log^4 n$
论文作者
论文摘要
Kim和vu做出了以下猜想(\ textit {数学进展},2004年):如果$ d \ gg \ log n $,则可以随机$ d $ d $ g(n,d)$在$ g(n,p _*)$ g(n,p _*)$ p^$ p^*之间,可以sandwiched'sandwiched'sandwiched'等于$ d/n $。 以前,这种著名的猜想已被证明是所有$ d \ gg(n \ log n)^{3/4} $。 在本文中,我们确认$ d \ gg \ log^4 n $时的猜想。我们还将此结果扩展到接近规范的序列。
Kim and Vu made the following conjecture (\textit{Advances in Mathematics}, 2004): if $d\gg \log n$, then the random $d$-regular graph $G(n,d)$ can be ``sandwiched'' between $G(n,p_*)$ and $G(n,p^*)$ where $p_*$ and $p^*$ are both asymptotically equal to $d/n$. This famous conjecture was previously proved for all $d\gg (n\log n)^{3/4}$. In this paper, we confirm the conjecture when $d \gg \log^4 n$. We also extend this result to near-regular degree sequences.