论文标题

用于实现单调测试应用的实用值功能的等值不平等现象

Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing

论文作者

Black, Hadley, Kalemaj, Iden, Raskhodnikova, Sofya

论文摘要

我们将Khot,Minzer和Safra〜(Sicomp 2018)的著名等等不平等概括为Boolean函数,以实现Real-valued函数$ f \ colon \ colon \ {0,1 \}^d \ to \ Mathbb {r Mathbb {r} $。我们在广义不平等的证明中的主要工具是一种新的布尔分解,它代表了一个任意部分订购的每个真实功能$ f $ $ f $,作为在同一域上的布尔功能的集合,大致捕获了$ f $ $ f $的距离$ f $与单调性的距离和单调性$ f $的结构。 我们应用广义的等术不平等,以改善测试单调性的算法,并近似于实现功能的单调性距离。我们的单调测试仪具有查询复杂性$ \ widetilde {o}(\ min(r \ sqrt {d},d),d))$,其中$ r $是输入函数图像的大小。 (Chakrabarty和Seshadhri(Stoc 2013)的最佳先前已知测试仪,使$ O(D)$ Queries。我们为非适应性的1面错误测试仪显示了一个匹配的下限,以进行单调性。我们还表明,与单调的$α$ far的单调性的距离可以在$ o(\ sqrt {d \ log d})的一倍以内近似于单调的近似值,并具有查询复杂性$ 1/α$和尺寸$ d $ d $ d $的$ O(\ sqrt {d \ log d})$。即使对于布尔函数的特殊情况,该查询复杂性对于非自适应算法几乎是最佳的。 (Fattal and Ron(Talg 2010)实现$ O(d \ log r)$ - 近似值。

We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra~(SICOMP 2018) for Boolean functions to the case of real-valued functions $f \colon \{0,1\}^d\to\mathbb{R}$. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function $f$ over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of $f$ to monotonicity and the structure of violations of $f$ to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity $\widetilde{O}(\min(r \sqrt{d},d))$, where $r$ is the size of the image of the input function. (The best previously known tester, by Chakrabarty and Seshadhri (STOC 2013), makes $O(d)$ queries.) Our tester is nonadaptive and has 1-sided error. We show a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are $α$-far from monotone can be approximated nonadaptively within a factor of $O(\sqrt{d\log d})$ with query complexity polynomial in $1/α$ and the dimension $d$. This query complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves $O(d\log r)$-approximation.)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源