论文标题

通过时空神经网络和动态视觉传感器的快速运动理解

Fast Motion Understanding with Spatiotemporal Neural Networks and Dynamic Vision Sensors

论文作者

Bisulco, Anthony, Ojeda, Fernando Cladera, Isler, Volkan, Lee, Daniel D.

论文摘要

本文介绍了基于动态视觉传感器(DVS)的系统,用于推理高速运动。作为代表性的情况,我们考虑机器人在静止状态下的情况,该机器人以高于15m/s的速度对一个小,快速接近的物体做出反应。由于典型帧速率的常规图像传感器仅对几个帧观察到这样的对象,因此估计基础运动对标准的计算机视觉系统和算法提出了巨大的挑战。在本文中,我们提出了一种方法,该方法是由昆虫等动物如何通过相对简单的视觉系统解决这个问题的动机。 我们的解决方案从DVS中获取事件流,并首先用一组在多个时间尺度上使用一组因果指数过滤器编码时间事件。我们将这些过滤器与卷积神经网络(CNN)相结合,以有效提取相关的时空特征。组合的网络学会了输出对象碰撞的预期时间,以及在离散的极性网格上预测的碰撞点。这些关键的估计是由网络以最小的延迟计算的,以便对传入对象做出适当的反应。我们将系统的结果强调为以234m/s的速度移动的玩具飞镖,$θ$ 24.73°误差,平均离散半径为18.4mm,平均离散半径预测错误,以及25.03%的碰撞预测错误时间中位时间。

This paper presents a Dynamic Vision Sensor (DVS) based system for reasoning about high speed motion. As a representative scenario, we consider the case of a robot at rest reacting to a small, fast approaching object at speeds higher than 15m/s. Since conventional image sensors at typical frame rates observe such an object for only a few frames, estimating the underlying motion presents a considerable challenge for standard computer vision systems and algorithms. In this paper we present a method motivated by how animals such as insects solve this problem with their relatively simple vision systems. Our solution takes the event stream from a DVS and first encodes the temporal events with a set of causal exponential filters across multiple time scales. We couple these filters with a Convolutional Neural Network (CNN) to efficiently extract relevant spatiotemporal features. The combined network learns to output both the expected time to collision of the object, as well as the predicted collision point on a discretized polar grid. These critical estimates are computed with minimal delay by the network in order to react appropriately to the incoming object. We highlight the results of our system to a toy dart moving at 23.4m/s with a 24.73° error in $θ$, 18.4mm average discretized radius prediction error, and 25.03% median time to collision prediction error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源