论文标题
一个用于学习解释飞行的着陆参数的隧道高斯流程模型
A Tunnel Gaussian Process Model for Learning Interpretable Flight's Landing Parameters
论文作者
论文摘要
进场和着陆事故导致了全球大量的船体损失。已经开发了技术(例如,仪器着陆系统)和程序(例如,稳定的方法标准)来降低风险。在本文中,我们提出了一种数据驱动的方法,以学习和解释飞行的方法和着陆参数,以促进对飞行动态的可理解和可行的见解。具体而言,我们开发了两种隧道高斯工艺(TGP)模型的变体,以使用高级表面运动指导和控制系统(A-SMGCS)数据阐明飞机的进近和着陆动力学,然后表明飞行的稳定性。 TGP杂交了稀疏变分高斯过程和极地高斯工艺的强度,以从圆柱坐标中的大量数据中学习。我们通过合成三个复杂的轨迹数据集进行定性和定量检查TGP,并将TGP与轨迹学习中的现有方法进行了比较。从经验上讲,TGP展示了出色的建模性能。当应用于操作A-SMGCS数据时,TGP提供了降落动力学的生成概率描述以及方法和着陆参数的可解释的隧道视图。这些概率的隧道模型可以促进在进近和着陆程序中遵守程序遵守和空中交通管制员的显示器的分析,从而实现必要的纠正措施。
Approach and landing accidents have resulted in a significant number of hull losses worldwide. Technologies (e.g., instrument landing system) and procedures (e.g., stabilized approach criteria) have been developed to reduce the risks. In this paper, we propose a data-driven method to learn and interpret flight's approach and landing parameters to facilitate comprehensible and actionable insights into flight dynamics. Specifically, we develop two variants of tunnel Gaussian process (TGP) models to elucidate aircraft's approach and landing dynamics using advanced surface movement guidance and control system (A-SMGCS) data, which then indicates the stability of flight. TGP hybridizes the strengths of sparse variational Gaussian process and polar Gaussian process to learn from a large amount of data in cylindrical coordinates. We examine TGP qualitatively and quantitatively by synthesizing three complex trajectory datasets and compared TGP against existing methods on trajectory learning. Empirically, TGP demonstrates superior modeling performance. When applied to operational A-SMGCS data, TGP provides the generative probabilistic description of landing dynamics and interpretable tunnel views of approach and landing parameters. These probabilistic tunnel models can facilitate the analysis of procedure adherence and augment existing aircrew and air traffic controllers' displays during the approach and landing procedures, enabling necessary corrective actions.