论文标题
基于残留最小化的自适应稳定有限元方法不可压缩的流量建模
Incompressible flow modeling using an adaptive stabilized finite element method based on residual minimization
论文作者
论文摘要
我们用自适应稳定的有限元方法Stokes Flow对不可压缩的流量进行建模,该方法解决了离散稳定的鞍点问题以近似速度压力对。此外,此鞍点问题还提供了强大的误差估计器来指导网格自适应。我们分析了连续有限元空间的不同离散速度压力对的准确性,这不一定满足离散的INF-SUP条件。我们通过数值示例来验证框架的性能。
We model incompressible flows with an adaptive stabilized finite element method Stokes flows, which solves a discretely stable saddle-point problem to approximate the velocity-pressure pair. Additionally, this saddle-point problem delivers a robust error estimator to guide mesh adaptivity. We analyze the accuracy of different discrete velocity-pressure pairs of continuous finite element spaces, which do not necessarily satisfy the discrete inf-sup condition. We validate the framework's performance with numerical examples.