论文标题

用于学习面部表达综合的局部接收场的掩盖线性回归

Masked Linear Regression for Learning Local Receptive Fields for Facial Expression Synthesis

论文作者

Khan, Nazar, Akram, Arbish, Mahmood, Arif, Ashraf, Sania, Murtaza, Kashif

论文摘要

与面部表达识别相比,表达合成需要非常高维的映射。此问题随着图像大小的增加而加剧了现有表达综合方法对相对较小的图像。我们观察到,面部表情通常构成稀疏分布,并且从一个表达到另一种表达式的局部相关变化。通过利用这一观察,可以显着减少表达合成模型中参数的数量。因此,我们提出了一个受约束的脊回归版本,该版本利用面部表情的局部和稀疏结构。我们认为该模型是学习局部接受场的掩盖回归。与现有方法相反,我们提出的模型可以在更大的图像大小上有效训练。使用三个可公开数据集的实验表明,我们的模型明显好于$ \ ell_0,\ ell_1 $和$ \ ell_2 $ - 基于SVD的方法,以及均值 - 越野器,视觉质量以及计算和空间复杂性的回归。参数数量的减少使我们的方法即使在较小的数据集上进行训练后也可以更好地概括。还将所提出的算法与包括Pix2Pix,Cyclean,Stargan和Ganimation在内的最新gan进行了比较。只要测试和训练分布相似,这些剂量就会产生光现实的结果。相比之下,我们的结果表明,在人类的照片,铅笔素描甚至动物面前,提出的算法对拟议算法的显着概括。

Compared to facial expression recognition, expression synthesis requires a very high-dimensional mapping. This problem exacerbates with increasing image sizes and limits existing expression synthesis approaches to relatively small images. We observe that facial expressions often constitute sparsely distributed and locally correlated changes from one expression to another. By exploiting this observation, the number of parameters in an expression synthesis model can be significantly reduced. Therefore, we propose a constrained version of ridge regression that exploits the local and sparse structure of facial expressions. We consider this model as masked regression for learning local receptive fields. In contrast to the existing approaches, our proposed model can be efficiently trained on larger image sizes. Experiments using three publicly available datasets demonstrate that our model is significantly better than $\ell_0, \ell_1$ and $\ell_2$-regression, SVD based approaches, and kernelized regression in terms of mean-squared-error, visual quality as well as computational and spatial complexities. The reduction in the number of parameters allows our method to generalize better even after training on smaller datasets. The proposed algorithm is also compared with state-of-the-art GANs including Pix2Pix, CycleGAN, StarGAN and GANimation. These GANs produce photo-realistic results as long as the testing and the training distributions are similar. In contrast, our results demonstrate significant generalization of the proposed algorithm over out-of-dataset human photographs, pencil sketches and even animal faces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源