论文标题

用于大型电场梯度和强剪切流的指导中心和陀螺仪理论

Guiding Center and Gyrokinetic Theory for Large Electric Field Gradients and Strong Shear Flows

论文作者

Joseph, Ilon

论文摘要

磁化粒子运动的引导中心和旋转肌动力学理论扩展到垂直于磁场的大型电场梯度的状态。电场中的梯度直接修饰振荡频率,并导致Larmor轨道从圆形到椭圆形轨迹变形。为了保留良好的绝热不变,只能以最低顺序对单个坐标有很大的依赖,因此共振不会产生破坏不变性的混乱运动。当磁通量表面的梯度占主导地位时,引导中心漂移速度响应外力而变化,并且必须包括其他曲率漂移。电偏振密度保持旋转,但巨型化和磁化因陀螺的变化而改变。该理论可以应用于在高性能托卡马克(H-Mode)基座的边缘传输屏障中更强的剪切流,即使环形场小于poloidal场小或什至小。然而,该理论保留了与标准案例相似的数学形式,并且可以在现有的仿真工具中容易实现。

The guiding center and gyrokinetic theory of magnetized particle motion is extended to the regime of large electric field gradients perpendicular to the magnetic field. A gradient in the electric field directly modifies the oscillation frequency and causes the Larmor orbits to deform from circular to elliptical trajectories. In order to retain a good adiabatic invariant, there can only be strong dependence on a single coordinate at lowest order, so that resonances do not generate chaotic motion that destroys the invariant. When the gradient across magnetic flux surfaces is dominant, the guiding center drift velocity becomes anisotropic in response to external forces and additional curvature drifts must be included. The electric polarization density remains gyrotropic, but both the polarization and magnetization are modified by the change in gyrofrequency. The theory can be applied to shear flows that are even stronger than those observed in the edge transport barrier of a high-performance tokamak (H-mode) pedestal, even if the toroidal field is as small as or even smaller than the poloidal field. Yet, the theory retains a mathematical form that is similar to the standard case and can readily be implemented within existing simulation tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源