论文标题

在VST-COSMOS字段中,基于森林的光学可变AGN选择

A random forest-based selection of optically variable AGN in the VST-COSMOS field

论文作者

De Cicco, D., Bauer, F. E., Paolillo, M., Cavuoti, S., Sánchez-Sáez, P., Brandt, W. N., Pignata, G., Vaccari, M., Radovich, M.

论文摘要

VLT调查望远镜对COSMOS场的调查是活跃银河核(AGN)变异性研究的吸引人的测试场。在3.3岁以上的54次R波段访问和24.6 R波段MAG的单访问深度为24.6 R-Band Mag中,该数据集在Vera C. Rubin C. Rubin C. Rubin observatory时空的遗产调查(LSST)的性能预测中也特别有趣。这项工作是致力于开发自动化,健壮和有效方法的系列中的第五,旨在将其部署在未来的LSST数据上。我们在选择光学可变的AGN候选物中测试了随机森林(RF)算法的性能,研究了不同AGN标记的集合(LSS)的使用如何影响此性能。我们定义了一个异质的AGN LS,并根据可以从LSST数据中提取的内容选择一组变异性功能以及光学和近红外颜色。我们发现,仅包括I型源的AGN LS可以选择高度纯净(91%)的AGN候选样本,从而获得有关光谱确认的69%的完整性(在我们以前的工作中为59%)。在变异性特征中添加颜色可轻微提高RF分类器的性能,而仅在选择AGN的返回候选者的样本时,仅颜色就比变异性不如变异性,并且无法识别大多数主机主导的AGN。我们观察到,明亮的(r <21 mag)Agn LS能够检索不受幅度削减影响的候选样本,这非常重要,因为对于LSST相关研究的微弱AGN LSS将很难找到和可能不平衡。我们估计LSST主调查的620万AGN的天空密度降至我们当前的幅度限制。

The survey of the COSMOS field by the VLT Survey Telescope is an appealing testing ground for variability studies of active galactic nuclei (AGN). With 54 r-band visits over 3.3 yr and a single-visit depth of 24.6 r-band mag, the dataset is also particularly interesting in the context of performance forecasting for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). This work is the fifth in a series dedicated to the development of an automated, robust, and efficient methodology to identify optically variable AGN, aimed at deploying it on future LSST data. We test the performance of a random forest (RF) algorithm in selecting optically variable AGN candidates, investigating how the use of different AGN labeled sets (LSs) and features sets affects this performance. We define a heterogeneous AGN LS and choose a set of variability features and optical and near-infrared colors based on what can be extracted from LSST data. We find that an AGN LS that includes only Type I sources allows for the selection of a highly pure (91%) sample of AGN candidates, obtaining a completeness with respect to spectroscopically confirmed AGN of 69% (vs. 59% in our previous work). The addition of colors to variability features mildly improves the performance of the RF classifier, while colors alone prove less effective than variability in selecting AGN as they return contaminated samples of candidates and fail to identify most host-dominated AGN. We observe that a bright (r < 21 mag) AGN LS is able to retrieve candidate samples not affected by the magnitude cut, which is of great importance as faint AGN LSs for LSST-related studies will be hard to find and likely imbalanced. We estimate a sky density of 6.2 million AGN for the LSST main survey down to our current magnitude limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源