论文标题
量子景观中的非平凡对称性及其对量子噪声的弹性
Non-trivial symmetries in quantum landscapes and their resilience to quantum noise
论文作者
论文摘要
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期的量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的指数大变化。另外,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,SYMH在存在与当前硬件相当的水平的情况下提高了整体优化器性能。总体而言,这项工作从局部门变换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
Very little is known about the cost landscape for parametrized Quantum Circuits (PQCs). Nevertheless, PQCs are employed in Quantum Neural Networks and Variational Quantum Algorithms, which may allow for near-term quantum advantage. Such applications require good optimizers to train PQCs. Recent works have focused on quantum-aware optimizers specifically tailored for PQCs. However, ignorance of the cost landscape could hinder progress towards such optimizers. In this work, we analytically prove two results for PQCs: (1) We find an exponentially large symmetry in PQCs, yielding an exponentially large degeneracy of the minima in the cost landscape. Alternatively, this can be cast as an exponential reduction in the volume of relevant hyperparameter space. (2) We study the resilience of the symmetries under noise, and show that while it is conserved under unital noise, non-unital channels can break these symmetries and lift the degeneracy of minima, leading to multiple new local minima. Based on these results, we introduce an optimization method called Symmetry-based Minima Hopping (SYMH), which exploits the underlying symmetries in PQCs. Our numerical simulations show that SYMH improves the overall optimizer performance in the presence of non-unital noise at a level comparable to current hardware. Overall, this work derives large-scale circuit symmetries from local gate transformations, and uses them to construct a noise-aware optimization method.