论文标题

使用非参数生存分析的长期管道故障预测

Long-Term Pipeline Failure Prediction Using Nonparametric Survival Analysis

论文作者

Weeraddana, Dilusha, MallawaArachchi, Sudaraka, Warnakula, Tharindu, Li, Zhidong, Wang, Yang

论文摘要

澳大利亚水基础设施已有一百多年的历史,因此已经开始通过水主要失败表明其年龄。我们的工作涉及在澳大利亚主要城市中大约一百万个管道,这些城市为房屋和企业提供水,为超过500万客户提供服务。这些埋藏资产的失败会损害财产和供水中断。我们应用了机器学习技术,以在这些澳大利亚城市中找到对管故障问题的成本效益解决方案,在这些城市中,每年平均会发生1500个水主要故障。为了实现这一目标,我们通过开发机器学习模型来评估和预测使用历史故障记录,管道的描述和其他环境因素来评估和预测水主要破裂的失败可能性,从而构建了水管网络行为的详细图像和理解。我们的结果表明,我们的系统包含了一种称为“随机生存森林”的非参数生存分析技术,在长期预测中优于几种流行算法和专家启发式方法。此外,我们构建了一种统计推理技术,以量化与长期预测相关的不确定性。

Australian water infrastructure is more than a hundred years old, thus has begun to show its age through water main failures. Our work concerns approximately half a million pipelines across major Australian cities that deliver water to houses and businesses, serving over five million customers. Failures on these buried assets cause damage to properties and water supply disruptions. We applied Machine Learning techniques to find a cost-effective solution to the pipe failure problem in these Australian cities, where on average 1500 of water main failures occur each year. To achieve this objective, we construct a detailed picture and understanding of the behaviour of the water pipe network by developing a Machine Learning model to assess and predict the failure likelihood of water main breaking using historical failure records, descriptors of pipes and other environmental factors. Our results indicate that our system incorporating a nonparametric survival analysis technique called "Random Survival Forest" outperforms several popular algorithms and expert heuristics in long-term prediction. In addition, we construct a statistical inference technique to quantify the uncertainty associated with the long-term predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源