论文标题

阶段gan:一种未配对数据集的深度学习相位回答方法

PhaseGAN: A deep-learning phase-retrieval approach for unpaired datasets

论文作者

Zhang, Yuhe, Noack, Mike Andreas, Vagovic, Patrik, Fezzaa, Kamel, Garcia-Moreno, Francisco, Ritschel, Tobias, Villanueva-Perez, Pablo

论文摘要

基于DL的相位检索方法提供了一个框架,以鲁棒方式和实时从强度全息图或衍射模式获取相位信息。但是,当前应用于相问题的当前DL架构依赖于i)在配对数据集上,即仅在发现相位问题令人满意的解决方案时才适用,ii)ii)大多数人忽略了成像过程的物理。在这里,我们介绍了基于生成对抗网络的一种新的DL方法,该方法允许使用未配对的数据集并包括图像形成的物理。通过包括图像形成物理学来增强我们的方法的性能,并在常规相检索算法失败时提供相位重建,例如超快速实验。因此,当没有相位重建时,eStepAn提供了解决相问题的机会,但是可以对对象或其他实验的数据进行良好的模拟,从而使我们能够获得以前无法获得的结果。

Phase retrieval approaches based on DL provide a framework to obtain phase information from an intensity hologram or diffraction pattern in a robust manner and in real time. However, current DL architectures applied to the phase problem rely i) on paired datasets, i.e., they are only applicable when a satisfactory solution of the phase problem has been found, and ii) on the fact that most of them ignore the physics of the imaging process. Here, we present PhaseGAN, a new DL approach based on Generative Adversarial Networks, which allows the use of unpaired datasets and includes the physics of image formation. Performance of our approach is enhanced by including the image formation physics and provides phase reconstructions when conventional phase retrieval algorithms fail, such as ultra-fast experiments. Thus, PhaseGAN offers the opportunity to address the phase problem when no phase reconstructions are available, but good simulations of the object or data from other experiments are available, enabling us to obtain results not possible before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源