论文标题
探索自觉探针计的自我发作
Exploring Self-Attention for Visual Odometry
论文作者
论文摘要
视觉轨道测定网络通常使用预审预周元的光流网络,以得出连续帧之间的自我运动。这些网络提取的功能代表帧之间所有像素的运动。但是,由于场景中存在动态对象和无纹理表面,每个图像区域的运动信息可能因动态对象在衍生位置增量变化而导致动态对象无效而无法可靠。该领域的最新作品缺乏其结构的注意力机制,无法促进特征图的动态重新尊敬,以提取更多精致的自我瘤信息。在本文中,我们探讨了自我注意力计算中自我注意力学的有效性。我们报告针对SOTA方法的定性和定量结果。此外,利用基于显着性的研究以及专门设计的实验来研究自我注意力对VO的影响。我们的实验表明,与缺乏这种结构的网络相比,使用自我注意力可以提取更好的特征,同时实现更好的进程性能。
Visual odometry networks commonly use pretrained optical flow networks in order to derive the ego-motion between consecutive frames. The features extracted by these networks represent the motion of all the pixels between frames. However, due to the existence of dynamic objects and texture-less surfaces in the scene, the motion information for every image region might not be reliable for inferring odometry due to the ineffectiveness of dynamic objects in derivation of the incremental changes in position. Recent works in this area lack attention mechanisms in their structures to facilitate dynamic reweighing of the feature maps for extracting more refined egomotion information. In this paper, we explore the effectiveness of self-attention in visual odometry. We report qualitative and quantitative results against the SOTA methods. Furthermore, saliency-based studies alongside specially designed experiments are utilized to investigate the effect of self-attention on VO. Our experiments show that using self-attention allows for the extraction of better features while achieving a better odometry performance compared to networks that lack such structures.