论文标题
超越Planck XV。 30至70 GHz之间的极化前景发射
BeyondPlanck XV. Polarized foreground emission between 30 and 70 GHz
论文作者
论文摘要
我们使用Planck低频仪器(LFI)(LFI)和全球Bayesian Beyondplanck框架内的Planck低频仪器(LFI)和WMAP数据限制了两极分化的前景发射。我们首次将全分辨率Planck LFI定期数据与低分辨率WMAP Sky Maps相结合,位于33、40和61 GHz。光谱参数适合在每个频道的天然分辨率下定义的可能性。该分析代表了应用于振幅和光谱能量分布(SED)参数的CMB观测值的真正多分辨率分离的首次实现。对于同步加速器的发射,我们将SED近似为频率的幂律,发现当前数据的信噪比较低会严重限制可能受到牢固限制的自由参数的数量。我们将天空划分为四个大型不相交区域(高纬度;银河骨架;银河平面;银河系中心),每个中心都与其自身的幂律指数有关。我们发现,高纬度区域是事先主导的,而银河中心区域则被残留的仪器系统污染。剩下的两个区域似乎是信号主导的,对于这些,我们得出了$β_ {\ Mathrm s}^{\ Mathrm {spur}} = - 3.17 \ pm0.06 $和$β_ {\ mathrm s}^{\ mathrm s}^{\ wood的0.06}的光谱指标。先前的结果。对于热灰尘发射,我们假设一个改良的黑体模型,并且在整个天空中拟合一个幂律指数。我们发现$β_ {\ mathrm {d}} = 1.64 \ pm0.03 $,它比普朗克HFI数据中报道的稍微陡峭,但在2 $σ$置信水平上仍然统计上一致。
We constrain polarized foreground emission between 30 and 70 GHz with the Planck Low Frequency Instrument (LFI) and WMAP data within the global Bayesian BeyondPlanck framework. We combine for the first time full-resolution Planck LFI time-ordered data with low-resolution WMAP sky maps at 33, 40 and 61 GHz. Spectral parameters are fit with a likelihood defined at the native resolution of each frequency channel. This analysis represents the first implementation of true multi-resolution component separation applied to CMB observations for both amplitude and spectral energy distribution (SED) parameters. For synchrotron emission, we approximate the SED as a power-law in frequency and find that the low signal-to-noise ratio of the current data strongly limits the number of free parameters that may be robustly constrained. We partition the sky into four large disjoint regions (High Latitude; Galactic Spur; Galactic Plane; and Galactic Center), each associated with its own power-law index. We find that the High Latitude region is prior-dominated, while the Galactic Center region is contaminated by residual instrumental systematics. The two remaining regions appear to be signal-dominated, and for these we derive spectral indices of $β_{\mathrm s}^{\mathrm{Spur}}=-3.17\pm0.06$ and $β_{\mathrm s}^{\mathrm{Plane}}=-3.03\pm0.07$, in good agreement with previous results. For thermal dust emission we assume a modified blackbody model and we fit a single power-law index across the full sky. We find $β_{\mathrm{d}}=1.64\pm0.03$, which is slightly steeper than reported from Planck HFI data, but still statistically consistent at the 2$σ$ confidence level.