论文标题

使用集成感应皮肤和复发性神经网络对软机器人的自适应跟踪控制

Adaptive Tracking Control of Soft Robots using Integrated Sensing Skin and Recurrent Neural Networks

论文作者

Weerakoon, Lasitha, Ye, Zepeng, Bama, Rahul Subramonian, Smela, Elisabeth, Yu, Miao, Chopra, Nikhil

论文摘要

在本文中,我们研究了软机器人的综合估计和控制。通过软机器人中的集成感应,部署闭环控制器的一个重大挑战是可靠的本体感受。尽管在制造,建模和基于模型的软机器人的控制方面取得了长足的进步,但集成感应和估计仍处于起步阶段。为此,本文介绍了一种新的方法,可以使用可拉伸的感应皮肤估算软机器人的曲率程度。皮肤是在乳胶膜上的喷涂压电感应层。通过使用复发性神经网络来估计从应变信号到曲率程度的映射。我们研究单段软机器人的单向弯曲以及双向弯曲。此外,开发了一个自适应控制器,以在存在动态不确定性的情况下跟踪软机器人的曲率程度。随后,使用集成的软感应皮肤,我们在实验上证明了软机器人的成功曲率跟踪控制。

In this paper, we study integrated estimation and control of soft robots. A significant challenge in deploying closed loop controllers is reliable proprioception via integrated sensing in soft robots. Despite the considerable advances accomplished in fabrication, modelling, and model-based control of soft robots, integrated sensing and estimation is still in its infancy. To that end, this paper introduces a new method of estimating the degree of curvature of a soft robot using a stretchable sensing skin. The skin is a spray-coated piezoresistive sensing layer on a latex membrane. The mapping from the strain signal to the degree of curvature is estimated by using a recurrent neural network. We investigate uni-directional bending as well as bi-directional bending of a single-segment soft robot. Moreover, an adaptive controller is developed to track the degree of curvature of the soft robot in the presence of dynamic uncertainties. Subsequently, using the integrated soft sensing skin, we experimentally demonstrate successful curvature tracking control of the soft robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源