论文标题

用于服务功能链接的图形神经网络的强化学习

Reinforcement Learning of Graph Neural Networks for Service Function Chaining

论文作者

Heo, DongNyeong, Lee, Doyoung, Kim, Hee-Gon, Park, Suhyun, Choi, Heeyoul

论文摘要

在计算机网络系统的管理中,服务功能链(SFC)模块通过具有虚拟化网络功能(VNF)的物理服务器生成有效的网络流量路径来发挥重要作用。为了提供最高质量的服务,即使在各种网络拓扑情况下,SFC模块也应快速生成有效的路径,包括动态VNF资源,各种请求和拓扑变更。先前的监督学习方法表明,网络功能可以由Graph神经网络(GNN)代表SFC任务。但是,性能仅限于带有标记数据的固定拓扑。在本文中,我们将加强学习方法应用于具有未标记数据的各种网络拓扑模型的培训模型。在实验中,与先前的监督学习方法相比,所提出的方法在新拓扑中表现出显着的灵活性,而无需重新设计和重新训练,同时保留了相似的性能水平。

In the management of computer network systems, the service function chaining (SFC) modules play an important role by generating efficient paths for network traffic through physical servers with virtualized network functions (VNF). To provide the highest quality of services, the SFC module should generate a valid path quickly even in various network topology situations including dynamic VNF resources, various requests, and changes of topologies. The previous supervised learning method demonstrated that the network features can be represented by graph neural networks (GNNs) for the SFC task. However, the performance was limited to only the fixed topology with labeled data. In this paper, we apply reinforcement learning methods for training models on various network topologies with unlabeled data. In the experiments, compared to the previous supervised learning method, the proposed methods demonstrated remarkable flexibility in new topologies without re-designing and re-training, while preserving a similar level of performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源