论文标题
分区理论Frobenius型极限公式
Partition-theoretic Frobenius-type limit formulas
论文作者
论文摘要
使用分区生成函数技术,我们证明了$ q $ - series类似物的frobenius公式概括了亚伯的复杂功率系列收敛定理。 Frobenius的结果指出,对于$ | q | <1 $,$ \ lim_ {q \ to 1}(1-q)\ sum_ {n \ geq 1} f(n)q^n $等于平均值$ \ lim_ {n \ n \ to \ infty} $ $ \ frac {1} {n} \ sum_ {k = 1}^{n} f(k)$的序列$ \ {f(n)\} $作为$ n \ to \ infty $,如果平均值存在。
Using partition generating function techniques, we prove $q$-series analogues of a formula of Frobenius generalizing Abel's convergence theorem for complex power series. Frobenius' result states that for $|q|<1$, $\lim_{q\to 1}(1-q)\sum_{n\geq 1} f(n) q^n $ is equal to the average value $\lim_{N\to \infty}$ $\frac{1}{N}\sum_{k=1}^{N}f(k)$ of the sequence $\{f(n)\}$ as $n\to \infty$, if the average value exists.