论文标题

通过矢量标签传播算法的社区检测

Community Detection through Vector-label Propagation Algorithms

论文作者

Fang, Wenyi, Wang, Xin, Liu, Longzhao, Wu, Zhaole, Tang, Shaoting, Zheng, Zhiming

论文摘要

社区检测是网络科学中的一个基本和重要问题,因为社区结构通常揭示了复杂系统的不同组成部分之间的拓扑和功能关系。在本文中,我们首先提出了一个模块化优化的梯度下降框架,称为矢量标签传播算法(VLPA),其中节点与连续社区标签的向量而不是一个标签相关联。 VLPA在矢量标签中保留弱结构信息,优于一些众所周知的社区检测方法,尤其是提高社区结构较弱的网络的性能。此外,我们将随机梯度策略纳入VLPA中,以避免卡在局部最佳状态,从而导致随机矢量标签传播算法(SVLPA)。我们表明,SVLPA的性能比人工基准和现实世界网络上广泛使用的社区检测算法Louvain方法更好。我们基于矢量标签传播的理论方案可以直接应用于每个节点具有多个特征的高维网络,也可用于优化其他分区测量,例如使用分辨率参数进行模块化。

Community detection is a fundamental and important problem in network science, as community structures often reveal both topological and functional relationships between different components of the complex system. In this paper, we first propose a gradient descent framework of modularity optimization called vector-label propagation algorithm (VLPA), where a node is associated with a vector of continuous community labels instead of one label. Retaining weak structural information in vector-label, VLPA outperforms some well-known community detection methods, and particularly improves the performance in networks with weak community structures. Further, we incorporate stochastic gradient strategies into VLPA to avoid stuck in the local optima, leading to the stochastic vector-label propagation algorithm (sVLPA). We show that sVLPA performs better than Louvain Method, a widely used community detection algorithm, on both artificial benchmarks and real-world networks. Our theoretical scheme based on vector-label propagation can be directly applied to high-dimensional networks where each node has multiple features, and can also be used for optimizing other partition measures such as modularity with resolution parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源