论文标题
功能磁共振成像的区域间相关估计器
Inter-regional correlation estimators for functional magnetic resonance imaging
论文作者
论文摘要
大脑区域之间的功能磁共振成像(fMRI)功能连通性通常是使用由功能或结构图谱定义的分析来计算的。通常,进行某种体素平均以获得每个区域对的单个时间相关估计。但是,可以针对此任务定义几个估计器,并具有各种假设和稳健性的局部噪声,全局噪声和区域大小。 在本文中,我们基于简单的fMRI数据空间模型,系统地介绍并研究了9种不同功能连接估计量的特性。其中包括3个现有估计器和6个新型估计器。我们在图形结构,可重复性和可重复性,可区分性,对区域大小的依赖以及局部和全局噪声稳健性方面,使用合成,动物和人类数据来证明估计量的经验特性。 我们通过分析证明区域内相关和区域间相关之间的联系,并表明估算器的选择对相关值有很大的影响。
Functional magnetic resonance imaging (fMRI) functional connectivity between brain regions is often computed using parcellations defined by functional or structural atlases. Typically, some kind of voxel averaging is performed to obtain a single temporal correlation estimate per region pair. However, several estimators can be defined for this task, with various assumptions and degrees of robustness to local noise, global noise, and region size. In this paper, we systematically present and study the properties of 9 different functional connectivity estimators taking into account the spatial structure of fMRI data, based on a simple fMRI data spatial model. These include 3 existing estimators and 6 novel estimators. We demonstrate the empirical properties of the estimators using synthetic, animal, and human data, in terms of graph structure, repeatability and reproducibility, discriminability, dependence on region size, as well as local and global noise robustness. We prove analytically the link between regional intra-correlation and inter-region correlation, and show that the choice of estimator has a strong influence on inter-correlation values.