论文标题

对话框模拟具有现实的变化,用于培训目标对话系统

Dialog Simulation with Realistic Variations for Training Goal-Oriented Conversational Systems

论文作者

Lin, Chien-Wei, Auvray, Vincent, Elkind, Daniel, Biswas, Arijit, Fazel-Zarandi, Maryam, Belgamwar, Nehal, Chandra, Shubhra, Zhao, Matt, Metallinou, Angeliki, Chung, Tagyoung, Zhu, Charlie Shucheng, Adhikari, Suranjit, Hakkani-Tur, Dilek

论文摘要

面向目标的对话系统使用户能够完成特定的目标,例如请求有关电影或预订机票的信息。通常,对话系统管道包含多个ML模型,包括自然语言理解,状态跟踪和行动预测(策略学习)。这些模型是通过有监督或加固学习方法组合来培训的,因此需要收集标记的域特定数据集。但是,通过语言和对话流的变化收集带注释的数据集是昂贵的,耗时的,并且由于人类的参与而缩小不佳。在本文中,我们提出了一种方法,可以自动从一些彻底注释的示例对话框和对话框模式中自动创建大量注释的对话框。我们的方法包括一种新颖的目标采样技术,用于采样合理的用户目标和对话框模拟技术,该技术使用用户和系统(Alexa)之间的启发式相互作用(ALEXA),用户试图实现采样目标。我们通过生成数据并培训三种不同的下游对话ML模型来验证我们的方法。我们取得了18个?与基线对话框生成方法相比,只有50%的相对准确性提高了,该方法只能从现有目录中采样自然语言和实体价值变化,但不会产生任何新颖的对话流量变化。我们还定性地确定所提出的方法比基线更好。此外,已经使用这种方法构建了几种不同的对话体验,这使客户能够与Alexa进行各种对话。

Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket. Typically the dialog system pipeline contains multiple ML models, including natural language understanding, state tracking and action prediction (policy learning). These models are trained through a combination of supervised or reinforcement learning methods and therefore require collection of labeled domain specific datasets. However, collecting annotated datasets with language and dialog-flow variations is expensive, time-consuming and scales poorly due to human involvement. In this paper, we propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema. Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal. We validate our approach by generating data and training three different downstream conversational ML models. We achieve 18 ? 50% relative accuracy improvements on a held-out test set compared to a baseline dialog generation approach that only samples natural language and entity value variations from existing catalogs but does not generate any novel dialog flow variations. We also qualitatively establish that the proposed approach is better than the baseline. Moreover, several different conversational experiences have been built using this method, which enables customers to have a wide variety of conversations with Alexa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源