论文标题

称量真空能量

Weighing the Vacuum Energy

论文作者

Alvarez, Enrique, Anero, Jesus, Santos-Garcia, Raquel

论文摘要

我们在各种情况下讨论真空能量的重量。首先,我们计算表格$ \ mathbb {t}^3 \ times \ mathbb {r} $的平面空间的真空能量,其中$ \ mathbb {t}^3 $代表了一般的3托。我们在Radius $ r $和RADIUS $ \ frac {l_s^2} {r} $之间的能量之间发现了一个非常简单的关系。然后,我们考虑$ \ mathbb {m} _3 \ times s^1 $中的标量场真空能量中的量子重力效应,其中$ \ mathbb {m} _3 $是一般弯曲的空间,圆圈$ s $ s^1 $ refers ref to to spacelike coortial。我们将其计算为一般相对论和通用横向{\ em tdiff}理论。在特定的单型重力真空能量的特定情况下,不会引起重力。

We discuss the weight of vacuum energy in various contexts. First, we compute the vacuum energy for flat spacetimes of the form $\mathbb{T}^3 \times \mathbb{R}$, where $\mathbb{T}^3$ stands for a general 3-torus. We discover a quite simple relationship between energy at radius $R$ and energy at radius $\frac{l_s^2}{ R}$. Then we consider quantum gravity effects in the vacuum energy of a scalar field in $\mathbb{M}_3 \times S^1$ where $\mathbb{M}_3$ is a general curved spacetime, and the circle $S^1$ refers to a spacelike coordinate. We compute it for General Relativity and generic transverse {\em TDiff} theories. In the particular case of Unimodular Gravity vacuum energy does not gravitate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源