论文标题
示意图扩展中时间综合的分析解决方案:应用于实频图蒙特卡洛
Analytical solution for time-integrals in diagrammatic expansions: application to real-frequency diagrammatic Monte Carlo
论文作者
论文摘要
过去的几年,人们对图形蒙特卡洛(DIAGMC)方法的兴趣恢复了,用于在晶格上相互作用。一个有希望的近期发展使现在人们可以在Matsubara形式主义中阐明动态可观察物的分析延续。符号代数算法使其成为可能,该算法可用于分析求解Feynman图的内部Matsubara频率求和。在本文中,我们采用了另一种方法,并表明它产生了改善的结果。我们提出了一个假想时间积分的封闭形式的分析解决方案,该解决方案出现在Feynman图的时间域公式中。我们基于该分析解决方案实施和测试DIAGMC算法,并表明它具有许多重要的优势。最重要的是,该算法对于任何类型的单时间相关函数序列都足够一般,涉及任何单粒子顶点插入。因此,它很容易允许使用动作变速方案,旨在改善该系列的收敛性。通过执行频率分辨的换挡调整,我们能够进一步改善该方法并在非平凡的方向上融合自能源,仅使用3-4个扰动顺序。最后,我们在许多常用的蒙特卡洛算法中确定了相同一般形式的时间积分,因此预计我们的分析解决方案会更广泛使用。
The past years have seen a revived interest in the diagrammatic Monte Carlo (DiagMC) methods for interacting fermions on a lattice. A promising recent development allows one to now circumvent the analytical continuation of dynamic observables in DiagMC calculations within the Matsubara formalism. This is made possible by symbolic algebra algorithms, which can be used to analytically solve the internal Matsubara frequency summations of Feynman diagrams. In this paper, we take a different approach and show that it yields improved results. We present a closed-form analytical solution of imaginary-time integrals that appear in the time-domain formulation of Feynman diagrams. We implement and test a DiagMC algorithm based on this analytical solution and show that it has numerous significant advantages. Most importantly, the algorithm is general enough for any kind of single-time correlation function series, involving any single-particle vertex insertions. Therefore, it readily allows for the use of action-shifted schemes, aimed at improving the convergence properties of the series. By performing a frequency-resolved action-shift tuning, we are able to further improve the method and converge the self-energy in a non-trivial regime, with only 3-4 perturbation orders. Finally, we identify time integrals of the same general form in many commonly used Monte Carlo algorithms and therefore expect a broader usage of our analytical solution.