论文标题
一个用于跟踪开放域中程序文本中实体的数据集
A Dataset for Tracking Entities in Open Domain Procedural Text
论文作者
论文摘要
我们介绍了第一个数据集,用于通过使用无限制的(开放)词汇来跟踪来自任意域的过程文本中的状态变化。例如,在描述用土豆清除雾除雾的文本中,汽车窗可能在雾,粘性,不透明和清晰之间过渡。此任务的先前表述提供了所涉及的文本和实体,并询问这些实体如何仅需一组预定义的属性集(例如,位置),从而限制了其忠诚度。我们的解决方案是一种新的任务公式,其中仅给定程序文本作为输入,该任务是为每个步骤生成一组状态更改元组(实体,交易,预定状态,态度,后期),其中实体,属性和状态值必须从开放的词汇中预测。使用众包,我们创建了OpenPI1,这是高质量的(由人类和完全审查的91.5%的覆盖率),以及由Wikihow.com的810个过程现实世界中的810个Prosing facteralliald段落中的4,050个句子组成29,928个州变化的大型数据集。该任务上的当前最新一代模型基于BLEU指标,可实现16.1%的F1,为新颖的模型体系结构留出了足够的空间。
We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky,opaque, and clear. Previous formulations of this task provide the text and entities involved,and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples(entity, at-tribute, before-state, after-state)for each step,where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI1, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.